
Massive Mobile Games Porting: Meantime Study Case

Tarcísio P. Câmara Rodrigo B. V. Lima Rangner F. Guimarães

Alexandre L.G. Damasceno Vander R. Alves* Pedro H. Macedo Geber L. Ramalho*

Meantime Mobile Creations, Brazil *University Federal of Pernambuco, Brazil

Abstract

Game development for mobile devices is usually
regarded as a simpler task when compared to games
developed for desktop platforms. Indeed, the resources
provided by the latter do support more complex
applications, therefore, increasing the final product
value, and also making the development cycle longer.
Although mobile games (and mobile applications, in
general) do not have the same amount of resources to
be explored, they must adhere to a very strong
portability requirement and, since the whole
development cycle is rather short, this porting phase
must be as efficient and cheap as possible, so that it
does not have a huge impact on the final product. In
this present work, we will discuss Meantime’s
experience in developing and porting J2ME games to a
large amount of different devices, elucidating how we
have evolved from an immature porting process up to a
new process that has proved to be more scalable,
efficient, cheaper and easier to maintain.

Keywords: porting process, mobile build system,
J2ME mobile games

Authors’ contact:
{tarcisio.camara,
pedro.macedo}@meantime.com.br
{rbvl, rfg, algd}@cesar.org.br
*vander@acm.org, *glr@cin.ufpe.br

1. Introduction

Nowadays, in order to reach a significant share of the
market, mobile game developers shall make their
games available to as much platforms as possible and
also to a great number of wireless carries, all this in a
time spam of only three to four months (typical
duration of the whole development cycle). Therefore,
mobile games shall be developed, from the very
beginning, focusing on portability, otherwise, this
phase of the development cycle, which tends to be
extremely time consuming, will easily become
expensive and difficult to manage, endangering the
project as a whole.

There are various problems that impair portability

[Sampaio et al 2004]: different API optional packages;
different carriers’ requirements; different
implementation of the KVM; different screen size and
resolution; sound capabilities; processor power; just to

name a few. All this myriad of resources the developer
must take into account in order to build competitive
games, associated with the fact that the development
cycle for a mobile game should not be too long, and
that a game must be available for dozens of platforms
and wireless carriers, usually in various languages,
makes porting a very expensive and complex task.

 Other previous researches have already focused on
how to make the porting process easier for the mobile
domain. The Unified Mobile Framework (UMAK)
[UMACK 2006], for instance, provides reusable
components and a set of tools combined in an
application that intends to ease the porting process of
J2ME applications, while J2ME Polish [J2ME Polish
2006] provides a pre-processing feature by which
guidelines define a conditional compilation of the
source code according to a given device. However, as
it will be shown in Section 3, these solutions have
some limitations. In particular, we seek approaches that
provide a high level of scalability. An industrial effort
is also done by mobile game companies to improve
porting, however they normally do not publish their
methods, considering them industrial secret.

In a previous work, we have already presented an ad

hoc solution to the portability problem [Sampaio et al
2004; Alves et al 2005]. In this present paper, we will
present an evolution of that solution: the MG2P
(Meantime Game Porting Platform). MG2P includes a
set of techniques, tools and artifacts to provide
generality and, above all, scalability to the process.
This current approach was conceived and validated in
an industrial scale by Meantime, a leader mobile game
studio and publisher sited in Brazil, which develops
and publishes games since 2003 for some of the most
important wireless carriers in the world.

In the remainder of this paper, we will address the

porting problem based on Meantime’s experience in
developing J2ME games. In Section 2, we present
some of the difficulties associated to porting during
game development. In Section 3, we will start by
describing some related work in the area. Afterwards,
we will present how Meantime used to conduct the
porting process in the past (Section 4.1), and how it is
done now (Section 4.2). Lastly, we will draw some
conclusions about our work.

2. Mobile Porting Difficulties

There is a significant amount of different mobile
devices out in the market, each one with different
capacities, functionalities and retail prices. These
different devices coexist especially due to the fact that
there are different segments of the market with distinct
needs and financial resources. Besides, operators and
publishers need that the developed games be delivered
to the greatest possible number of users, forcing the
developer to provide multiple versions of the
application, each optimized to a specific device. The
demand of porting mobile games is so critical in the
industry that there are currently specialized companies
in providing such service [Tira 2004].

Even ignoring BREW [Qualcomm 2004] and
Symbian [Symbian 2004], and focusing on the J2ME
[Sun 2004] universe (currently the most used platform
for developing mobile games), porting demands
significant efforts from the development team due to
several challenges. The main challenges, according to
our experience, are as follows:

• Different features of the devices regarding

user interface, such as screen size, number
of colors, screen resolution, sounds, and
keyboard layout;

• Total heap capacity and maximum
application size;

• Different profiles (MIDP 1.0 and MIDP
2.0);

• Different implementations of a same
profile in J2ME (different JSRs);

• Proprietary APIs and optional packages;
• Device-specific bugs;
• Carrier specific requirements;
• Internationalization;

Despite the manufacturer’s efforts to make their

devices totally compatible with the J2ME standard
specification, some devices have known bugs,
requiring a number of device-specific workaround
when a programmer has to use these defective libraries.
Once again, porting is compromised.

There is also the natural language issue: developers

and publishers, which operate globally, inexorably
need to translate their games to a great variety of other
languages. In some cases, several languages can be
included in a single version; however, most of the
times, it is more convenient and efficient, in terms of
final size of the application, to have several versions,
one for each language.

Generally, wireless carries demand that a game be
available to a minimum amount of distinct devices
(about twenty five families), adding to that some
language variations, as well as other factors, the
number of SKUs (Stock Keeping Units) for a single
game can easily get close too more than a thousand.

Suppose a developer wants to sell its game all over
Europe, USA and Latin America. In order to cover
these territories it must release its games in, at least, six
languages, for example, English, Portuguese, Spanish,
French, German and Italian, assuming seventeen
wireless carriers, each with their own naming
conventions and demanding the usage of specific APIs
and features, and a total of twenty-five different
families of devices (at the lowest), we would end up
with 2,550 SKUs. From these numbers, it should be
obvious to notice that meeting the portability
requirement is a critical issue in this business.

Therefore, providing consistent maintenance of

these game versions or variations becomes a more
expensive and error-prone task, as the functional
common core of the application is normally dispersed
across such variations. Despite this, market pressure
demands that the time span for game development be
around three or four months, after which a game must
be available in dozens of platforms, wireless carries
and in several different languages. As discussed
previously, meeting the portability requirement is a
critical issue in this business.

A well-defined porting process is vital for the

development of mobile games. Ideally, one efficient
porting process must fulfill the following requirements:

• It should be scalable: once the core game

play is fully developed, creating a new
version shall not be an extremely
complicated and time consuming task;

• It should provide a good level of
maintainability: new features or bug fixes
shall be easily replicated through all
different versions of the game;

• Total development effort shall be reduced
regarding both time and cost issues, as
well as, number of people involved;

• It should be adaptive, so developers can
extract the most out of the particular
features of each device.

• It should provide correctness and
reproducibility, so that, if needed,
developer can create the same SKU many
times without including additional errors.

In this paper we are going to present the porting

process defined and currently used by Meantime: The
MG2P (Meantime Game Porting Platform). As it will
be shown in Section 4, this porting process adheres to
the requirements stated before.

3. Related Work

Current approaches to porting can be classified in the
following categories: device-independent frameworks,
pre-processing tools, general guidelines, specific
guidelines, semi-automatic services, and formal
approaches.

The Unified Mobile Application Framework

(UMAK) [UMAK 2006] is a framework that provides
reusable components and a set of tools combined in an
application that intends to ease the porting process of
J2ME applications. The reusable components are used
as a framework, the developer writes his application
targeting the framework’s API instead of J2ME’s API
and any native APIs that a particular vendor may
provide. UMAK also provides several facilities for
seamlessly supporting build-time transformations of
images, use of different images based on screen size,
grouping of images, multi-language text, and selection
of the most optimized audio format. It also uses a code
pre-processor for insertion or removal of variation
points in the code. However, developer cannot add
support for new devices. Moreover, UMAK-defined
directives used in the code prevent it from compiling
during development, which makes code editing more
difficult because of error warnings on IDEs.

Similar to the approach presented in this paper,

J2ME Polish [J2ME Polish 2006] provides a pre-
processing feature by which guidelines define a
conditional compilation of the source code (written to
comprise several platforms) according to the device in
question. Besides that, J2ME Polish contains a device
database (described with their peculiarities), which is
used in the process of instantiating a specific variation.
However, such database is not open and contains
recurring bugs.

Some approaches are specific to source and target
devices, and consist of a descriptive document of the
characteristics of these [Motorola 2004]. They specify
the direction (source/target devices) of portability, but
are more descriptive in terms of device features than
prescriptive in terms of actually carrying out the
porting.

Other approaches offer broader guidelines [Facon
2004], involving a research of the target device, an
architecture reorganization and source code
transformation, but underestimate the effort necessary
for this last task.

A more recent approach [Tira 2004] consists of
specifying reference devices and specific guidelines for
programming for these devices, and then generating
the code for the target device with tool support. The
tool carries its tasks by using a transformation system
following principles similar to those of Apects-
Oriented Programming (AOP) [Kiczales et al. 1997].
Such approach is described as automatic, but demands
that the game be coded according to the guidelines,
which may itself be a resource-demanding task.

Some recent formal approaches [Gajos et al 2004;
Cardone et al. 2002; Hua Chu et al. 2004] propose an
abstract specification of the elements of Graphical User
Interface (GUI), devices characteristics, and user
interface usage scenarios. Based on these, they

generate code for different types of GUI.
Unfortunately, such approaches depend on hypotheses
which restrain the GUI's organization, have a
considerable specification effort and address only GUI,
not taking into consideration issues like heap memory
and maximum application size constraints.

In another previous work, a language-independent
way to represent porting-related variability is provided,
and it is shown how it can be used to port J2SE
applications to a J2ME product line [Zhang 2003]. This
is similar to the program transformation approach we
describe, but differs in that ours relies on language-
specific constructs and variation points are identified in
the program transformation language, whereas the
latter is language independent, but requires the
developer to explicitly specify the variation points in
the base code.

In previous research [Alves 2005], we have also

used conditional compilation (pre-processing
approach) to manage porting issues in mobile games.
However, as discussed in next section, this paper
introduces a significant evolution of the previous work.
The new process addresses more variability issues,
such as language, service carriers, and more device
features, providing a strong improvement of porting
scalability. Accordingly, the build system has been
significantly improved to generate a number of SKUs
that is an order of magnitude higher than what had
been previously accomplished.

4. Porting Process

In the remainder of this section we will describe two
porting approaches, one ad hoc method, no longer used
by Meantime (section 4.1); and a more elaborated and
efficient one (section 4.2), which is based on a mobile
domain database, a base architecture and a robust build
system.

4.1 Previous Ad Hoc Process

The previous process adopted by Meantime was based
on an incremental approach [Sampaio et al 2004; Alves
et al 2005]. Initially, one version of the game was
developed for a specific mobile device and, afterwards,
the source code produced was replicated for other
devices, until all device families were attended. The
whole process was based on copying and pasting the
original developed code, making the necessary changes
like, for instance, user interface simplifications,
animations and removing images that were not strictly
necessary in order to adapt it for the porting device.

By using this method, one source code was

created/maintained for each ported device. One of the
main problems with this approach is that, once a
common bug (a bug related to all versions) is found or
any new feature has to be included, a lot of time is
necessary in order to replicate these alterations

throughout all versions of the game, generating, hence,
more costs and demanding more time.

In order to clarify how painful this process can be,

bellow follows the description of some of the problems
faced by us during the development of a game based
on this approach.

 The game was initially developed for a Nokia

Series 60 device, with the purpose of making the most
usage of its capabilities. By the time this game was
developed, Nokia Series 60 devices were amongst the
most powerful devices available, therefore, this version
of the game became an upper limit regarding heap
memory usage, processing power, and application size.
This version of the game was about 180KB and used
more than 1,5MB of heap memory.

After completing this first version of the game, we

have decided to port it to Nokia’s Series 40 devices,
especially because these two device families have
similar specifications and APIs in common. Besides
that, Series 40 represents a fair portion of the devices
with J2ME in markets like Europe, Asia and Latin
America. However, this series presents at least two
significant constraints: maximum application size of
64KB and heap memory limit of 200KB. Regarding
theses constraints, we have decided to decrease the
number of levels in the game, without, however,
making it too short. Besides that, since the levels were
shortened because of the smaller screen size of the
target devices, the level files became smaller as well.
Another choice made was to reduce image size, for the
same reason stated before. With all this work, the game
size was reduced from 186KB to 63KB.

Another problem found is that, series 60 devices

have a serious bug preventing the garbage collector
from completely freeing the memory used by an image
object. This way, there is a memory leak every time an
image resource is allocated and freed more than once
during the execution of the application. Therefore, the
approach used on the Series 60 version was to load all
images during game start up and leave them in memory
as long as the application is running. Since the heap
memory of this series’ devices is large enough,
adopting such technique was not an issue. Series 40
devices, however, have the 200 KB heap size
constraint; hence, this technique is not possible. One
suitable image allocation policy for this platform is to
keep in memory only those images that will be used
immediately, and make them eligible to be collected as
soon as they had been used, since garbage collection
on Series 40 does not cause memory leak. This way a
specific code was developed to support this variation
of approach.

From the example shown before, we can notice that
porting a game from one device family to another
involves a high amount of changes, and that these
changes are not only related to the source code, but to
the resources files as well. Having all this in mind, we

can conclude that this previous porting approach is not
applicable to large scale porting. It generates an extra
coding effort when it is necessary to develop a version
to for a new device, or when there is a change request
that affects all versions. The process to be described in
the next section solves most of these management
problems and it is easier to use as a background
process.

4.2 The MG2P (Meantime Game
Porting Platform)

Nowadays, we address the porting problem using a
new approach, the Meantime Game Porting Platform
(MG2P). As the company gained more experience in
this area, we were able to come up with a solution that,
for our particular case, has made the porting process
more efficient (as it will be shown in section 5).

As stated before, this approach is grounded on three
major pillars: a mobile domain database, a base
architecture (MBA – Meantime Base Architecture) and
a robust build system (MBS – Meantime Build
System). One of the main advantages of the MG2P is
that there is only one source code, shared by all
versions. As a result, the code is easier to maintain,
reducing overall costs.

In the following subsections we will detail further

each one of the modules that are part of the MG2P.

4.2.1 Mobile Domain Database

Based on our past experiences we have conducted

an analysis of the mobile domain in order to verify the
underlying variability and also similarity between its
elements. Our first step was to abstract the hundreds of
devices into families. By defining families of devices,
we were able to group together those devices that have
similar characteristics and known issues. Some of these
characteristics are very important for the porting job,
such as: the real size of the screen; the version of
MIDP/CLDC; the size of the heap memory; the
maximum size of the final JAR file and the presence of
the Multimedia API for sound playback. We have
identified the most relevant features and described their
variability, categorizing them as follows:

• Device specific variations: differences

regarding the device itself, like screen
sizes, key codes, sound playback approach,
etc; presence of vibration API; image
transformation API, etc;

• Game feature variations: presence of
specific game APIs;

• Known issues: general issues encountered
in more than one device;

• General variations: support of multi-
language and graphical font;

• Feature variations: presence or not of
features like game ranking upload.

Once these characteristics have been mapped out,

we were able to aggregate the most significant devices
of each manufacturer into families, being each family a
combination of similar characteristics.

For each family, we have elected a device as being
its representative. Usually, this family representative is
the less powerful device of the family (in terms of
processor speed, memory capabilities and overall
performance), and also the one that has the highest
amount of known issues for that family. As the porting
job to a specific family is done by targeting its
representative, we can assume that, if the game runs
fine on this device, then we will probably have the job
done to all other devices of the same family, without
hassles. However, we do test the version generated on
some other devices of the same family.

It is important to notice that, although some

manufacturers, like Nokia, have created the concept of
device families, the concept of families defined by us
is not necessarily equal to the ones specified by the
manufacturers. Our categorization is based on criteria
that are relevant for the porting job. In our case,
families are defined based on devices’ characteristics
and past experiences. This information is compiled in a
spreadsheet and must be used throughout the porting
job.

Since our goal with this new approach was to have

a single code base shared between all different versions
of the game, we have mapped all these variations and
sub-variations into preprocessing tokens, which are
heavily used during development.

Such variability often affects both the source code

and the resource files. For example, to implement a
sound API for a specific family, we need to change the
source code itself, as well as selecting the sound files
in the appropriate format (compatible with that API).
In order to map such variability into the source code,
we rely on mapping specific features under
preprocessing tokens; to map such variability regarding
the resource files, we rely on the build system to select
the proper resources for each family (section 4.2.3).

Table 1 shows an example of preprocessing tokens

related to screen size variations and also to the use of a
game specific API. Table 2 lists some of the
preprocessing tokens used to define a particular family
of Nokia handsets.

The NOK1 family represents Nokia phones with

MIDP 1.0 and screen size of 128x128 pixels. The
token device_screen_128x128 is used specify the size
of the device’s screen. The key codes for all Nokia
handsets are defined by the token device_keys_nokia.
The canvas class of these phones must extend a
proprietary class of Nokia UI package. This variation is
handled by the device_graphics_canvas_nokiaui token.
As the family is MIDP 1.0 compliant, it does not have

built-in game specific classes, image transformation
API and also do not have sound capabilities. These
features are implemented by using Nokia’s proprietary
classes as well as Meantime’s internal classes that are
under the tokens device_graphics_transform_nokiaui,
game_sprite_api_meantime and
device_sound_api_nokia.

Category Sub-
Category Variation Token

128x117 device_screen_128x117
128x128 device_screen_128x118
130x130 device_screen_130x130
128x142 device_screen_128x142
128x149 device_screen_128x149

Device
specific

Screen
Size

… …

Meantime
API tiledlayer_api_meantime

MIDP 2.0
API tiledlayer_api_midp2

Game
Features

Usage of
Tiled
Layer
API

Siemens
Game API tiledlayer_api_siemens

Table 1. Example of preprocessing tokens.

Family ID Tokens Used
device_screen_128x128

device_keys_nokia
device_graphics_canvas_nokiaui

device_graphics_transform_nokiaui
game_sprite_api_meantime

NOK1

device_sound_api_nokia

Table 2. Preprocessing tokens for the NOK1
family.

As it will be shown in section 4.2.3, the build

system uses the preprocessing tokens defined in the
property file to preprocess the base code. After
preprocessed, the code is then compiled. In order to
correctly package the code for deployment, the build
system uses the resource information available in a
property file, so that it can obtain the right resources to
be used by a specific family.

4.2.2 Meantime Basic Architecture (MBA)

The result of domain implementation is the

reference architecture, the MBA. This architecture
embeds porting-related variability, which is identified
by the preprocessing tokens and by a suggestion of
directory structure to organize all resource files.

The basic idea of this architecture is to be a guide

for developers, helping to produce code that follows
the standards adopted by the company. All design
patterns, classes and recommendations came up from
past experiences. The architecture was designed to
make the porting job easier and avoid common
mistakes during the design and development phases.

All basic variations are handled by the MBA. This

approach speeds up the development of a new game as

it allows developers to focus only on the game
features, passing to the architecture the responsibility
of handling major code variations between the devices.

The development team begins the coding phase

from a stable version of the architecture, creating the
base game core. This unique base code will evolve up
to the full game itself, and for all required families.
Game specific features should be developed taking into
account the fact that the source code must be portable
across all the families defined by the mobile domain
database. Some coding standards and guidelines are
adopted in order to accomplish that. If a new general
variation (not mapped by the architecture) appears
during game development, it should be analyzed and, if
it is the case, incorporated in the mobile domain
database as one or more new preprocessing tokens and
the MBA will be updated properly.

4.2.3 Meantime Build System (MBS)

We have developed a build system based on Ant

[Ant 2006] and Antenna [Antenna 2004] in order to
allow the compilation and resource packaging during
the deployment phase. For each family described in the
past sections, we have a property file that lists all the
preprocessing tokens used for a particular device, as
well as, paths for resource files that should be used to
pack the SKU. The property file also includes other
things the MBS needs to know in order to compile and
package the application for a specific device. The final
result of the build system is always the executable
SKU, ready to be installed in the device.

Figure 1 represents a scheme of the MBS

functionality. It shows the core game code and also the
resources repository. In this example, a total of four
SKUs are created, two for the MOT1 family and two
for the NOK1 family, one in English (en) and another
in Portuguese (pt).

Figure 1. Meantime Build System

The build system uses preprocessing tokens defined

in the property files to preprocess the base code. This
preprocessing step selects the appropriate pieces of
code for the particular family and comments all other
pieces of code. After preprocessed, the code is
compiled. Thus, the base code contains code for all
families in a unique set of source code files.

To package the application, the build system uses

the resource information also available in the property
file to select the right resources for a given family. For
example, if a device has a small screen, its property file
should refer to appropriate directory with smaller
image files.

Property files are designed so that they contain

minor game specific information. Thus, property files
provided by the architecture can often be reused by
many games, with almost no changes. The list of
preprocessing tokens is predefined for each device
family, as described in previous section. It uses tokens
already coded in the architecture code. The set of
resource paths for each device is based on resource
directory structure suggested by the architecture.

4.2.4 Porting Activities

According to Meantime’s experience in developing

mobile games, we have observed that it is extremely
important to pay close attention to the portability
problem from the very beginning of the development
cycle. The earlier the development team focuses on
portability issues, the easier the porting process will be.
Therefore, we have included some porting activities in
the formal Meantime’s development process. All
phases have been affected. During the analysis and
design phase, for instance, it is important to define
which key features will be part of the game core, that
is, the functionalities that will be present in all versions
of the game to be deployed. In the same way, it is also
necessary to identify what additional features (if any)
will be made available exclusively to a certain family
of devices. During the coding phase, it is important to
focus on code quality, maintainability and legibility.
This can be achieved by, for instance, defining a set of
good coding practices and making them available to all
programmers, and also by defining a basic architecture
from where all starting projects should inherit.

By having all these pieces of information regarding

variability amongst versions of the same game
beforehand, and all the device specific information
mapped into properties files (provided by the MBA),
the porting process occurs without major difficulties.
In order to generate a version for a specific family, we
only need to submit the appropriate property file to the
MBS. Once this first version is created, minor game
specific adjustments might be necessary to get the
game running perfectly in this family. Such
adjustments are often related to the position of

Build MOT1_en

Build MOT1_pt

MOT1.properties

NOK1.properties

Resource base

Build
System

Core game
code

Build NOK1_en

Build NOK1_pt

graphical elements in the screen and can be generally
handled in less than a day.

As the knowledge base grows bigger and more

devices families are being mapped, the process of
porting to a new family, not previously provided by the
MBA, becomes increasingly easier. The probability
that a new family has all its characteristics already
mapped in the code base becomes very high,
transforming the porting process in a mere creation of a
property file, therefore, reducing the porting time to
less than one hour. In this case, no coding is needed.

For carrier variations, we just need to copy and

update the property files to match carrier specific
requirements. Variations by carriers often refer just to
application naming conventions or some minor
information that requires no coding. Even when a
carrier requires some specific feature, such as an
additional logo screen, the code variation is
implemented in the core game code under a certain
preprocessing tag. Then, all we need to do is enable
that tag when generating the SKUs for the respective
carrier. Generally, this coding effort can be concluded
in a few days.

5. Results

In this section, we will illustrate how we were able to
improve the porting process using the MG2P, as
described in this paper. We are going to analyze the
results obtained in five different games: Zaap, Big
Brother Brazil, Zaak, Madagascar’s Jungle Mix and
Ronaldinho Juggling [Meantime 2006]. For this
analysis, we have considered the following variables:

• Project start up date;
• Total project duration;
• Number of families;
• Total number of devices;
• Number of available languages;
• Number of Stock Keeping Units (SKUs).

The development of the game Zaap started on April

1st, 2004. It is non connected platform/puzzle game,
created by using an ad hoc process with no base
architecture or advanced build system. The same SKUs
were used by all carriers since it was not needed to
change the SKU nomenclature, nor any of the
application’s attributes

The game Big Brother Brazil had its development

cycle started on October 1st, 2004. It is a connected
Tamagochi like game and it was created using the first
version of the build system, base architecture and
porting process. The same SKUs were used by all
carriers. As Zaap, it was not necessary to change the
SKU nomenclature, nor any of the application’s
attributes.

For the game Zaak, the development cycle started
on May 25th, 2005. This game is a refactor of the game
Zaap, using an initial draft version of MBS and MBA.
It is a connected game (players can publish their score
in an online rank) and it was distributed by many
wireless carries throughout the globe.

The development of Madagascar Jungle Mix started

on May 26th, 2005. It is a puzzle game, also created
using a preliminary version of the MBS, MBA and
porting process. It is not a connected game and the
same SKUs were used by all carriers since it was not
needed to change the SKU nomenclature, nor any of
the application’s attributes.

Ronaldinho Juggling is the newest game amongst

the ones mentioned here. Its development started on
December 22nd, 2005. Differently from the other ones,
it was created based on the new technologies presented
in this paper. It is a connected, casual, one button
game, where players can publish their scores on an
integrated global ranking system: the Meantime
Arena [Meantime Arena 2006]. It was published by
many carriers around the world, but unlike Zaak, most
of these carries have requested specific changes on the
game’s attributes, languages and SKU nomenclature.

Table 3 presents an analysis of these five games in

order to show how the base architecture and the build
system have improved the development process.

�����
� �� ��
	
���

� �
��� �
� ��
�
�� �

� �
��� �
� ��
� �� � � �� � � �� �� � � � � � �

� ��� � � �� � � �� � � � !" # � !� �

$
� �$
� �� �
�
$
�%
��

&'�
� � � �� � � !" � !(# � !� !" �

� ��) � # �� � � �� � � *� !((� (� !+ �

, � � � ����
- �
(&'�

� � � �� � �� *� !# (� !� *�

. � � ���
� � � �
, � � � �
� � �

&'�
� � � �� � � (� � (/ � '� (# ! �

Table 3. Games analysis

As it can be observed, the average development

time for all games is about 3 months. However, the use
of MG2P the build system and the base architecture
increased the number of ported device families and
SKUs substantially. The difference between
Ronaldinho’s game and the others is extremely
significant.

Ronaldinho’s game has demanded such high

number of SKUs because most of the carriers where
the game was published have specific requests about
nomenclature, attributes related to connection and
languages. Without this new porting approach and the
underlying technology, it would not be possible to
generate and manage this large amount of SKUs. Other
games have also been created using this technology,
for instance, Senna’s Best Lap and Senninha’s Race
games, where the number of SKUs and the total
development time are almost the same as Ronaldinho’s
game.

It is clear to see that this new approach has allowed
us to publish our games in more wireless carriers than
before (even considering a great number of
restrictions) keeping a reasonable low budget and
increasing the number of deployed versions.

6. Conclusion

Porting is an essential activity in the development of
mobile applications, particularly in games. The great
variety of devices together with business requirements
demands that the same application be available in lots
of different devices in a short period of time. This adds
complexity to the development process, and also to
software maintenance. In order to compete globally in
this market, all these issues need to be properly
handled. In our case, the support of dedicated in-house
toolchains and porting oriented process were essential
to accomplish our objectives.

This paper presents the MG2P, a novel and

successful porting process for easily creating thousands
of different versions of mobile games. MG2P includes
a set of Meantime developed techniques, tools and
artifacts, supported by some industry standard
technologies. MG2P also defines all activities required
to develop massively ported games, as well as practices
to continuously improve the porting process.

It is known that some big companies have the same

number of ported devices, maybe using different
technologies, however, no one has ever published their
methods, keeping their technologies in secret.

The results of applying MG2P show that it was

possible to increase the number of SKUs developed
from 6 to 2316 and increase the number of ported
devices from 103 to 276 with almost the same budget.
Hence, these results show a significant success of
applying MG2P to scale the number of ported devices.

The proposed process is well suited to a small

company like ours because, by adopting it, we are able
to develop a game with a team of 3 engineers working
in the game core (following the guidelines to let the
code ready for porting), and, at the same time, only 2
more engineers are necessary to handle the porting job.
The level of maturity of our process allows the
development of more than two thousand versions of a
single game with a very small team; this would be
impossible using ad hoc processes, as the one used
previously by Meantime. As a comparison, companies
like Jamdat and Gameloft, leaders in mobile gaming
market have teams from 50 to 100 engineers and QA
team just to port and localize the game in order to
fulfill carriers’ requirements. We could have opted to
hire another company to port our games to other
devices, but if we consider that a porting company
charges about U$ 1,500 for each single ported version,

we are saving a lot of time and money by using this
new process.

 Besides that, this porting process allows us to

compete in a global marketing, where devices coverage
is one of the most important requirements, which
determines whether or not a given game will accepted
by wireless carriers.

Acknowledgements

The authors would like to thank FINEP and FACEPE,
two Brazilian foundation organizations, which have
supported process documentation and final evolution
of MG2P until current mature state. Additionally, the
authors would like to thank Meantime for allowing us
to publish the results and details of the process.

References

ALVES, V., CARDIM, I., VITAL, H., SAMPAIO, P., DAMASCENO,

A., BORBA, P., AND RAMALHO, G., 2005. Comparative
Analysis of Porting Strategies in J2ME Games. In
Proceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM'05), Budapest,
Hungary, pages 123-132, September 2005. IEEE
Computer Society

ANTENNA, 2004. Available from:

http://antenna.sourceforge.net [Accessed 17 August
2006].

ANT, APACHE, 2006. Available from: http://ant.apache.org/

[Accessed 17 August 2006].

CARDONE, R., BROWN, A., SMCDIRMID, AND LIN, C.. 2002.

Using mixins to build flexible widgets. In AOSD ’02:
Proceedings of the 1st international conference on
Aspect-oriented software development, pages 76–85.
ACM Press, 2002.

FACON, X., 2004. Porting Your MIDlets to New Devices.

Available from:
http://www.microjava.com/articles/techtalk/ [Accessed
17 August 2006].

GAJOS, K. AND WELD, D. S., 2004. Supple: automatically

generating user interfaces. In IUI ’04: Proceedings of the
9th international conference on Intelligent user interface,
pages 93– 100. ACM Press, 2004.

HUA CHU, H., SONG, H., WONG, C., KURAKAKE, S., AND

KATAGIRI, M., ROAM, 2004, a seamless application
framework. Journal of Systems and Software, 69(3):209–
226.

J2ME POLISH, 2006. Available from:

http://www.j2mepolish.org/ [Accessed 17 August 2006].

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C.,

LOPES, C. V., LOINGTIER, J. M., AND IRWIN, J., 1997.
Aspect–Oriented Programming. In European Conference
on Object–Oriented Programming, ECOOP’97, LNCS

1241, pages 220–242, Finland, June 1997. Springer–
Verlag.

KNUDSEN, J., 2003. Understanding JSR 185. Available

from:
http://developers.sun.com/techtopics/mobility/midp/
articles/jtwi/ [Accessed 17 August 2006].

MEANTIME, 2006. Available from:

http://www.meantime.com.br/ [Accessed 17 August
2006].

MEANTIME ARENA, 2006. Available from:

http://www.meantimearena.com/ [Accessed 17
August 2006].

MIDP, MOBILE INFORMATION DEVICE PROFILE, 2006.

Available from: http://java.sun.com/products/midp/
[Accessed 17 August 2006].

MOTOROLA, 2004. Porting guide: Motorola i95cl to

T720. Available from:
www.microjava.com/articles/MJN_Porting.Guide_i
95cl-T720.pdf [Accessed 17 August 2006].

QUALCOMM, 2004. Qualcomm Brew Home. Available from:

http://brew.qualcomm.com/brew/en/ [Accessed 17
August 2006].

SAMPAIO, P. DAMASCENO, A., SAMPAIO, I. ALVES, V.

RAMALHO, G. & BORBA, P. (2004). Portando Jogos em
J2ME: Desafios, Estudo de Caso, e Diretrizes. III
Workshop de Jogos e Entretenimento Digital. (pp. 82-
88). Curitiba: Sociedade Brasileira de Computação

SUN., 2004. Java 2 Platform, Micro Edition (J2ME).

Available from: http://java.sun.com/j2me/ [Accessed
17 August 2006].

SYMBIAN, 2004. Symbian OS. Available from:

http://www.symbian.com [Accessed 17 August 2006].

TIRA WIRELESS, 2004. TiraJump. Available from:

http://www.tirawireless.com/jump/, [Accessed 17 August
2006].

UMAK, 2006. Available from:

http://www.unifiedmobiles.com/. [Accessed 17 August
2006].

ZHANG, W., JARZABEK, S., LOUGHRAN, N., and RASHID, A.,

2003. Reengineering a PC-based system into the mobile
device product line. In Proceedings of the Sixth
International Workshop on Principles of Software
Evolution (IWPSE’03), 2003.

